On Some 0- Conditions in the Lattice of Subgroups of the Symmetric Groups

A. Vethamanickam

Associate Professor, Department of Mathematics, Rani Anna Government College for Women, Tirunelveli-8, Tamil Nadu, India. dr_vethamanickam@yahoo.co.in

C. Krishna Kumar

Register No. : 11726, Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India. ckrishnakumar20@gmail.com

Abstract – In this paper we study about some 0-conditions in the lattice of subgroups of S_n . The 0-conditions in the lattice theoretic properties verified are: 0-distributivity, 0-modularity, 0-semi modularity, pseudo 0-distributivity, super 0-distributivity and 0-supermodularity in $L(S_n)$.

Index Terms – Symmetric Group, Lattice, 0-Conditions.

1. INTRODUCTION

In this paper we examine the 0-conditions in the subgroup lattices. R. Sulaiman, in his paper has given" Subgroups lattice of symmetric group S4" in [8]. Subsequently we have given "The structure of the lattice of subgroups of the symmetric group S_5 " in [14] and we have investigated there some basic properties satisfied by it. In this paper we study about 0-conditions like 0-distributivity, the 0-modularity, 0-semimodularity, pseudo 0-distributivity, super 0-distributivity and 0-supermodularity in $L(S_n)$, where $L(S_n)$ denote the subgroup lattice of S_n.

2. PRELIMINARY

We recall some lattice theoretic definitions that will be used later.

Definition 2.1

The symmetric group S_n is defined to be the group of all permutations on a set of n elements, ie, the symmetric group of degree n.

Definition 2.2

A Lattice L is said to be 0-distributive if for all x, y, $z \in L$, whenever $x \land y = 0$ and $x \land z = 0$ then $x \land (y \lor z) = 0$.

Definition 2.3

A Lattice L is said to be 0-modular if whenever $x \le y$ and $y \land z = 0$, then $x = (x \lor z) \land y$, for all x, y, $z \in L$.

Definition 2.4

A Lattice L is said to be 0-semi modular if whenever a is an atom of L and $x \in L$ such that $a \land x = 0$, then $x \lor a$ covers x.

Definition 2.5

A lattice L is said to be pseudo 0-distributive if for all x, y, $z \in L$ with $x \land y = 0$, $x \land z = 0$ we have $(x \lor y) \land z = y \land z$.

Definition 2.6

A lattice L is said to be super 0-distributive if for all x, y, $z \in L$, $x \land y = 0$ implies that $(x \lor y) \land z = (x \land z) \lor (y \land z)$.

Definition 2.7

A lattice L is said to be 0-supermodular if for all a, b, c, $d \in L$, with bAc=cAd=bAd = 0, we have $(a \lor b) \land (a \lor c) \land (a \lor d) = a$.

We produce below the structure of the lattice of subgroups of the symmetric groups S_2 , S_3 , S_4 and S_5 .

Fig. 2.1: Lattice Structure of L(S₂)

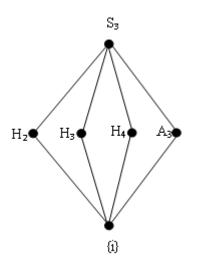


Fig. 2.2 : Lattice Structure of L(S₃)

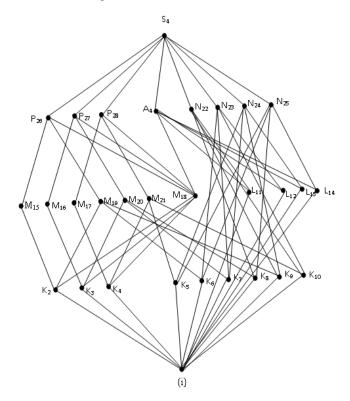


Fig. 2.3: Lattice Structure of L(S₄) [8]

Row I : (Left to right): R_{129} to R_{138} , V_{150} to V_{154} , R_{139} to R_{143} and T_{144} to T_{149} as shown in Fig. 2.4.

Row II : (Left to right): N_{78} to N_{87} , N_{98} to N_{107} , N_{88} to N_{97} , Q_{108} to Q_{122} and P_{123} to P_{128} as shown in Fig. 2.4.

Row III: (Left to right): K_{27} to K_{36} , L_{37} to L_{51} , L_{52} to L_{66} , L_{67} to L_{71} and M_{72} to M_{77} as shown in Fig. 2.4.

Row IV: (Left to right): H_2 to H_{11} and H_{12} to H_{26} . as shown in Fig. 2.4.

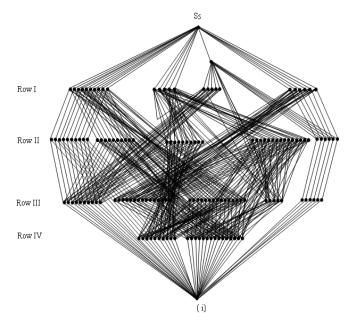


Fig. 2.4: Lattice Structure of L(S₅) [14]

3. MAIN RESULT

0-conditions in the subgroup lattices of Sn

In this section we examine the 0-conditions in the subgroup lattices. The concept of 0-distributive lattices was first introduced by J.C.Varlet [9]. Several authors made contributions in different aspects of 0-distributive lattices. For example, one can refer to Y. S. Pawar [7], A. Vethamanickam [13], P. Balasubramanie [1], A. Veeramani [10] etc. 0-super modular lattices concept was first introduced by A. Vethamanickam and J. Arivukkarasu [11] as a lattice L in which $b \land c = c \land d = b \land d = 0$ implies (a $\lor b$) \land (a $\lor c$) \land (a $\lor d$) = a for all a, b, c, d in L. Other conditions are 0-modularity, 0-semi modularity, 0-super modularity, etc. We examine them in L(S_n). We observe that L(S_i) is an interval of L(S_n) for all i<n.

Lemma 3.1

 $L(S_n)$ is 0-distributive if and only if $n \le 2$

Proof:

Let L(S_n) be 0-distributive

Suppose that n > 2, then $L(S_n)$ contains $L(S_3)$ as an interval which is not 0-distributive, since there are K_2 , K_3 and K_4 in $L(S_3)$ such that $K_2 \wedge K_3 = \{i\}$ and $K_2 \wedge K_4 = \{i\}$, but $K_2 \wedge (K_3 \vee K_4) = K_2 \neq \{i\}$ Therefore, the 0-distributivity of $L(S_n)$ implies that $n \leq 2$.

Conversely, assume that $n \le 2$ is true.

From Fig.2.1 and Fig.2.2 we see that $L(S_2)$ and $L(S_3)$ are 0-distributive. Hence the proof.

Lemma 3.2

 $L(S_n)$ is 0-modular if and only if $n \leq 3$

Proof:

Let $L(S_n)$ be 0-modular

Suppose that n > 3, then $L(S_n)$ contains $L(S_4)$ as an interval which is not 0-modular, Since it contains the sublattice $\{\{i\}, K_4, M_{18}, L_{11}, A_4\}$ which is isomorphic to the pentagon N_5 , which implies that $L(S_n)$ is not 0-modular.

Therefore, the 0-modularity of $L(S_n)$ implies that $n \leq 3$.

Conversely, assume that $n \leq 3$ is true.

From Fig.2.1 and Fig.2.2 we see that $L(S_2)$ and $L(S_3)$ are 0-modular, as they do not contain N_5 as a sublattice. Hence the proof.

Lemma: 3.3

 $L(S_n)$ is 0-semimodular if and only if $n \le 3$

Proof:

Let $L(S_n)$ be 0-semimodular

Suppose that n > 3, then $L(S_n)$ contains $L(S_4)$ as an interval which is not 0-semimodular. Since, we consider an atom K_4 and any element K_5 in $L(S_4)$ such that $K_4 \wedge K_5 = 0$ but $K_4 \vee K_5 = S_4$, which does not cover K_5 . Therefore, $L(S_4)$ is not 0-semimodular. Therefore $L(S_n)$ is 0-semimodular implies that $n \le 3$

Conversely, assume that $n \leq 3$ is true.

When n = 2, we know that $L(S_2)$ is isomorphic to B_1 , the 2-element chain, which is semi- modular. so it is 0-semi modular and $L(S_3)$ is isomorphic to M_4 , which is semi modular, so it is 0-semimodular. Hence the proof.

Lemma: 3.4

 $L(S_n)$ is Pseudo 0-distributive if and only if $n \leq 2$

Proof:

Let L(S_n) be Pseudo 0-distributive

Suppose n > 2, then $L(S_n)$ contains $L(S_3)$ as an interval which is not Pseudo 0-distributive, since, we consider the elements K_2 , K_3 and K_4 in $L(S_3)$, such that $K_2 \wedge K_3 = \{i\}$ and $K_2 \wedge K_4 = \{i\}$, but $(K_2 \vee K_3) \wedge K_4 \neq K_3 \wedge K_4$

Therefore $L(S_n)$ is Pseudo 0-distributive implies that $n \leq 2$

Conversely, assume that $n \leq 2$ is true.

When n = 2, we know that $L(S_2)$ is isomorphic to B_1 , the 2-element chain, which is Pseudo distributive. So it is Pseudo 0-distributive. Hence the proof.

Lemma: 3.5

 $L(S_n)$ is Super 0-distributive if and only if $n \le 2$

Proof:

Let $L(S_n)$ be Super 0-distributive

Suppose n > 2, then $L(S_n)$ contains $L(S_3)$ as an interval which is not Super 0-distributive, since, we consider the elements K_2 , K_3 and K_4 in $L(S_3)$, such that $K_2 \wedge K_3 = \{i\}$, but $(K_2 \vee K_3) \wedge K_4 \neq (K_2 \wedge K_4) \vee (K_3 \wedge K_4)$

Hence $L(S_n)$ is Super 0-distributive implies that $n \le 2$

Conversely, assume that $n \le 2$ is true.

When n = 2, we know that $L(S_2)$ is isomorphic to B_1 , the 2-element chain, which is super 0-distributive. Hence the proof.

Lemma: 3.6

 $L(S_n)$ is 0-Supermodular if and only if $n \le 2$

Proof:

Let $L(S_n)$ be 0-Supermodular

Suppose n > 2, then $L(S_n)$ contains $L(S_3)$ as an interval which is isomorphic to M_4 is not 0-Supermodular.

Hence $L(S_n)$ is 0-Supermodular implies that $n \le 2$

Conversely, assume that $n \leq 2$ is true.

When n = 2, we know that $L(S_2)$ is isomorphic to B_1 , the 2-element chain, which is 0-Supermodular. Hence the proof.

4. CONCLUSION

In this paper we have investigated some specified 0-conditions in the lattice $L(S_n)$, namely, 0-distributivity, 0-modularity, 0-semi modularity, pseudo 0-distributivity, super 0-distributivity and 0-super modularity.

REFERENCES

- [1] Balasubramanie. P, Stone topologies of the set of prime filters of a 0-distributive lattice, Indian Journal of Pure and App.math., 35(2), 149-158 (2004).
- [2] Fraleigh. J.B, A first course in Abstract Algebra, Addison Wesley, London, 1992.
- [3] Gardiner. C.F, A first course in group theory, Springer-Verlag, Berlin, 1997.
- [4] Gratzer. G, Lattice theory : Foundation. Birkhauser Veslag, Basel, 1998.
- [5] Herstien I.N, Topics in Algebra, John Wiley and sons, New York, 1975.
- [6] Jebaraj Thiraviam .D, A Study on some special types of lattices, Ph.D thesis, Manonmaniam Sundaranar University, 2015.
- [7] Pawar. Y.S., 0-1-distributive lattices, Indian Journal of pure and Applied Math., 24(3), 173-178, March 1993.

International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 6, Issue 3, March (2018) www.ijeter.et

- [8] Sulaiman R, Subgroups Lattice of Symmetric Group S₄; International Journal of Algebra, Vol. 6, 2012, no.1, 29-35.
- [9] Varlet. J. C., A genaralisation of notion of pseudo-complementedness, Bull.Soc.Roy.Liege., 37, 149-158(1968).
- [10] Veeramani. A, A study on characterization of some lattices, Ph.D thesis, Bharathidasan university, 2012.
- [11] Vethamanickam. A., and Arivukkarasu. J., On 0-Supermodular lattices, Math.Sci. Int.Res.Journal 3(2)(2014), 748-752.
- [12] Vethamanickam. A., and Jebaraj Thiraviam., On Lattices of Subgroups, Int.Journal of Mathematical Archiv-6(9), 2015, 1-11.
- [13] Vethamanickam. A., Topics in Universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.
- [14] A. Vethamanickam and C. Krishna Kumar "The structure of the lattice of subgroups of the symmetric group S₅", International Journal of Statistics and Applied Mathematics 2018; 3(2): 652-663.